home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
C/C++ Users Group Library 1996 July
/
C-C++ Users Group Library July 1996.iso
/
vol_200
/
274_01
/
a_binop.h
< prev
next >
Wrap
Text File
|
1980-01-01
|
10KB
|
312 lines
/* Array Handling Package
(C) Copyright 1985,1987,1988 James P. Cruse - All Rights Reserved
a_binop.h
A Part of the User-Supported Array Handling package. Please see
the file ARRAY.h for discussion concerning the registration and
usage of the package.
declares all binary operations:
Notation:
d[] => all elements of d (from 0 to n-1)
d[i] => the i'th element of d (from 0 to n-1)
d[i-1] => the i-1'th element of d (from 1 to n-1)
s => parameter s
f() => function parameter f (i.e. cos)
T => function type T (i.e. float)
running "sums" are d[0] = a[0], d[1] = d[0] "+" a[1], ...
d[n-2] = d[n-3] "+" a[n-2], d[n-1] = d[n-2] "+" a[n-1]
Note:
for each operation, there are 3 macros, for each combination
of arrays and constants, for example:
aa_op(n,d,a,b) array, array operation (d[] = a[] + b[])
ac_op(n,d,a,c) array, constant operation (d[] = a[] * c)
ca_op(n,d,c,a) constant, array operation (d[] = c - a[])
The functions are:
aa_add(n,d,a,b) d[] = a[] + b[] add a[] and b[]
ac_add(n,d,a,c) d[] = a[] + c add a[] and c
ca_add(n,d,c,b) d[] = c + b[] add c and b[]
aa_sub(n,d,a,b) d[] = a[] - b[] sub b[] from a[]
ac_sub(n,d,a,c) d[] = a[] - c sub c from b[]
ca_sub(n,d,c,b) d[] = c - b[] sub b[] from c
aa_mul(n,d,a,b) d[] = a[] * b[] multiply a[] and b[]
ac_mul(n,d,a,c) d[] = a[] * c multiply a[] and c
ca_mul(n,d,c,b) d[] = c * b[] multiply c and b[]
aa_div(n,d,a,b) d[] = a[] / b[] divide a[] by b[]
ac_div(n,d,a,c) d[] = a[] / c divide a[] by c
ca_div(n,d,c,b) d[] = c / b[] divide c by a[]
aa_mod(n,d,a,b) d[] = a[] % b[] Modulo a[] by b[]
ac_mod(n,d,a,c) d[] = a[] % c Modulo a[] by c
ca_mod(n,d,c,b) d[] = c % b[] Modulo c by a[]
aa_max(n,d,a,b) d[] = ARR_MAX(a[],b[]) max of a[] and b[]
ac_max(n,d,a,c) d[] = ARR_MAX(a[],c) max of a[] and c
ca_max(n,d,c,b) d[] = ARR_MAX(c,b[]) max of c and b[]
aa_min(n,d,a,b) d[] = ARR_MIN(a[],b[]) min of a[] and b[]
ac_min(n,d,a,c) d[] = ARR_MIN(a[],c) min of a[] and c
ca_min(n,d,c,b) d[] = ARR_MIN(c,b[]) min of c and b[]
aa_equ(n,d,a,b) d[] = a[] == b[] a[] equal b[]
ac_equ(n,d,a,c) d[] = a[] == c a[] equal c
ca_equ(n,d,c,b) d[] = c == b[] c equal b[]
aa_geq(n,d,a,b) d[] = a[] >= b[] a[] greater than or equal b[]
ac_geq(n,d,a,c) d[] = a[] >= c a[] greater than or equal c
ca_geq(n,d,c,b) d[] = c >= b[] c greater than or equal b[]
aa_gtr(n,d,a,b) d[] = a[] > b[] a[] greater than b[]
ac_gtr(n,d,a,c) d[] = a[] > c a[] greater than c
ca_gtr(n,d,c,b) d[] = c > b[] c greater than b[]
aa_leq(n,d,a,b) d[] = a[] <= b[] a[] less than or equal b[]
ac_leq(n,d,a,c) d[] = a[] <= c a[] less than or equal c
ca_leq(n,d,c,b) d[] = c <= b[] c less than or equal b[]
aa_les(n,d,a,b) d[] = a[] < b[] a[] less than b[]
ac_les(n,d,a,c) d[] = a[] < c a[] less than c
ca_les(n,d,c,b) d[] = c < b[] c less than b[]
aa_fun(n,d,a,b,f()) call f on a[] and b[]
d[] = f( a[] , b[] )
ac_fun(n,d,a,c,f()) call f on a[] and c
d[] = f( a[] , c )
ca_fun(n,d,c,b,f()) call f on c and a[]
d[] = f( c , a[] )
aa_t_fun(n,d,a,b,f(),T) call f on a[] and b[]
d[] = f((T)a[],(T)b[]) forcing a[i],b[i] to type T
ac_t_fun(n,d,a,c,f(),T) call f on a[] and c
d[] = f( (T)a[], (T)c ) forcing a[i],c to type T
ca_t_fun(n,d,c,b,f(),T) call f on c and a[]
d[] = f( (T)c, (T)a[] ) forcing c,a[i] to type T
*/
/* check to make sure array.h has been included */
#ifndef ARR_IF_NEEDED
#include "array.h"
#endif
/* check to see if we have been loaded */
#ifndef ARR_BINOP_LOADED
#define ARR_BINOP_LOADED 1
/* addition */
#define aa_add(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = (A)[ARR_IND] + (B)[ARR_IND]; \
} ARR_IF2
#define ac_add(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = (A)[ARR_IND] + (B); \
} ARR_IF2
#define ca_add(N,D,A,B) ac_add(N,D,B,A) /* same operation */
/* subtraction */
#define aa_sub(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = (A)[ARR_IND] - (B)[ARR_IND]; \
} ARR_IF2
#define ac_sub(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = (A)[ARR_IND] - (B); \
} ARR_IF2
#define ca_sub(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = (A) - (B)[ARR_IND]; \
} ARR_IF2
/* Multiplication */
#define aa_mul(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = (A)[ARR_IND] * (B)[ARR_IND]; \
} ARR_IF2
#define ac_mul(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = (A)[ARR_IND] * (B); \
} ARR_IF2
#define ca_mul(N,D,A,B) ac_mul(N,D,B,A) /* same operation */
/* division */
#define aa_div(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = (A)[ARR_IND] / (B)[ARR_IND]; \
} ARR_IF2
#define ac_div(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = (A)[ARR_IND] / (B); \
} ARR_IF2
#define ca_div(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = (A) / (B)[ARR_IND]; \
} ARR_IF2
/* minimum */
#define aa_min(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = ARR_MIN( (A)[ARR_IND] , (B)[ARR_IND] ); \
} ARR_IF2
#define ac_min(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = ARR_MIN( (A)[ARR_IND] , (B) ); \
} ARR_IF2
#define ca_min(N,D,A,B) ac_min(N,D,B,A) /* same operation */
/* maximum */
#define aa_max(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = ARR_MAX( (A)[ARR_IND] , (B)[ARR_IND] ); \
} ARR_IF2
#define ac_max(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = ARR_MAX( (A)[ARR_IND] , (B) ); \
} ARR_IF2
#define ca_max(N,D,A,B) ac_max(N,D,B,A) /* same operation */
/* modulo */
#define aa_mod(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = (A)[ARR_IND] % (B)[ARR_IND] ; \
} ARR_IF2
#define ac_mod(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = (A)[ARR_IND] % (B) ; \
} ARR_IF2
#define ca_mod(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = (A) % (B)[ARR_IND] ; \
} ARR_IF2
/* == */
#define aa_equ(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = ((A)[ARR_IND] == (B)[ARR_IND]); \
} ARR_IF2
#define ac_equ(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = ((A)[ARR_IND] == (B)); \
} ARR_IF2
#define ca_equ(N,D,A,B) ac_equ(N,D,B,A) /* same operation */
/* >= */
#define aa_geq(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = ((A)[ARR_IND] >= (B)[ARR_IND]); \
} ARR_IF2
#define ac_geq(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = ((A)[ARR_IND] >= (B)); \
} ARR_IF2
#define ca_geq(N,D,A,B) ac_leq(N,D,B,A) /* reversed, opposite test */
/* > */
#define aa_gtr(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = ((A)[ARR_IND] > (B)[ARR_IND]); \
} ARR_IF2
#define ac_gtr(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = ((A)[ARR_IND] > (B)); \
} ARR_IF2
#define ca_gtr(N,D,A,B) ac_les(N,D,B,A) /* reversed, opposite test */
/* <= */
#define aa_leq(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = ((A)[ARR_IND] <= (B)[ARR_IND]); \
} ARR_IF2
#define ac_leq(N,D,A,B) ARR_IF1 { \
ARR_TYPE_IND ARR_IND = (N); \
while ( ARR_IND-- ) \
(D)[ARR_IND] = ((A)[ARR_IND] <= (B)); \
} ARR_IF2
#define ca_leq(N,D,A,B) ac_geq(N,D,B,A) /* reversed,